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Dual synchronization of chaos

Yun Liu* and Peter Davis†

ATR Adaptive Communications Research Laboratories, 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
~Received 22 June 1999!

This paper treats the problem of simultaneously synchronizing two different pairs of chaotic oscillators with
a single scalar signal. The condition for dual synchronization is obtained explicitly for chaotic oscillators
represented by specific classes of piecewise-linear maps with conditional linear coupling. Dual synchronization
with conditional linear coupling is also demonstrated numerically for oscillators modeled by a number of
different classes of maps, and for oscillators modelled by delay-differential equations.

PACS number~s!: 05.45.Xt
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Chaos synchronization, or synchronization of chaotic
cillators, provides a means to copy chaos; that is, to gene
identical chaotic oscillations in different sites, by couplin
the oscillators with suitable driving signals@1,2#. The topic
of synchronization of chaotic oscillators has attracted
creased attention in recent years because of possible
evance to communications and biological systems@3,4#. One
of the interesting developments concerns the possibility
synchronizing multiple pairs of oscillators using just o
communication channel@5#. This is potentially useful in par-
ticular to applications of chaos to spectrum-spreading co
munication systems@6#.

This work concentrates on using a scalar signal to sim
taneously synchronize two different pairs of chaotic osci
tors, which we refer to as dual synchronization. Figure 1
schematic circuit diagram showing the situation of dual s
chronization. The outputs of a pair of master oscillators
linearly coupled and fed to a pair of slave oscillators. T
signals from the slave oscillators are coupled in a sim
way and subtracted from the signal received from the m
ters’ and the difference signal, or the joint error signal,
injected into each slave oscillator. When the slaves are s
chronized to their respective masters, the joint error signa
zero and no signal is injected into the slaves, so they are
oscillating. The fact that there is no coupling between
two master oscillators distinguishes this problem from
problem of using a single scalar signal to synchronize m
tidimensional chaotic oscillators, or hyperchaotic oscillat
with multiple positive Lyapunov exponents@7#. Tsimring
and Sushchik@5# showed that dual synchronization is po
sible for oscillators modeled by some well-known discre
maps when the contributions to the common signal are eq
i.e., «15«251/2 in Fig. 1. An explicit analytic condition for
synchronization was obtained for maps known as tent m

In this Rapid Communication, we show further, the pro
of dual chaos synchronization can be extended to the cas
maps with coupling coefficients satisfying the linear con
tion «11«251. The extension of the coupling condition fa
cilitates synchronization between very different pairs of c
otic oscillators. We show numerically examples of du
synchronization over a wide range of parameters in the c
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of various different pairs of chaotic maps, including the l
gistic map, Chebyshev map, generalized tent map, an
class of cosine maps. The extension of the coupling con
tion also facilitates the implementation of dual chaos s
chronization in practical physical systems. We propose
scheme of performing dual chaos synchronization in t
pairs of nonlinear resonators which can be modeled
delay-differential equations. The robustness of dual ch
synchronization in delay-differential systems with respect
both parameter mismatches and additive noises is verifie

To start with, we consider the case of a pair of masterX
and Y sending signals to a pair of slavesx and y using a
common channel in which their signals are linearly coupl

X~ t11!5 f „X~ t !…, ~1!

Y~ t11!5g„Y~ t !…. ~2!

Here, we consider the coupling in a general way by linea
combining the two outputs of the master oscillators as

u~ t !5«1f „X~ t !…1«2g„Y~ t !…, ~3!

where«1 , «2(0<«1 , «2<1) are coupling parameters. Th
slave system contains two oscillators identical to the pair
the master side and each oscillator is injected with an e
signale(t),

x~ t11!5 f „x~ t !…1e~ t !, ~4!

y~ t11!5g„y~ t !…1e~ t !, ~5!

FIG. 1. Schematic diagram of dual synchronization. Sign
from two independent master oscillators, represented byX and Y,
are sent to a system containing two corresponding slave oscilla
represented byx and y. In the dual synchronization state,x
5X, y5Y.
R2176 ©2000 The American Physical Society
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with

e~ t !5u~ t !2v~ t !, ~6!

v~ t !5«1f „x~ t !…1«2g„y~ t !…. ~7!

The dual synchronization state is defined asx(t)5X(t),
y(t)5Y(t). Clearly such a dual synchronization state c
exist as a solution. For example, if the initial state is cho
sox(0)5X(0) andy(0)5Y(0), theerror signal is zero and
remains zero, so the oscillations are and remain identical.
next show that the dual synchronization state can also b
attracting solution by evaluating the Lyapunov exponent
the slave system with respect to the synchronized statex(t)
5X(t), y(t)5Y(t).

Assume a small perturbation at timet is dx(t)5x(t)
2X(t) and dy(t)5y(t)2Y(t). Such perturbation evolve
according to the linearized dynamics given by

@dx~ t11!,dy~ t11!#T5M ~ t !@dx~ t !,dy~ t !#T ~8!

whereT means transpose and

M ~ t !5F ~12«1!D f~ t ! 2«2Dg~ t !

2«1D f~ t ! ~12«2!Dg~ t !G ~9!

is a 232 Jacobian matrix withD f(t)[d f /dxux5X(t) and
Dg(t)[dg/dyuy5Y(t) .

In Ref. @5#, dual synchronization was analytically prove
for a special coupling case,«15«251/2. Here, we show tha
such coupling constraint could be extended to a line«1
1«251. Under this condition, one of the eigenvalues ofM
is identically zero, and the only nonzero eigenvalue is giv
simply by

g5~12«1!D f1«1Dg . ~10!

The corresponding eigenvector (Lx ,Ly) satisfies«1Lx1(1
2«1)Ly50 and depends only on the ratio of the two co
pling coefficients, remaining constant during the evolution
the slave system. The maximum Lyapunov exponentl is
then given byl5 limL→` 1/L( t50

L21lnug(t)u. Thus, we obtain
the condition for dual synchronization with the linear co
pling as

lim
L→`

1

L (
t50

L21

lnu~12«1!D f~ t !1«1Dg~ t !u,0. ~11!

Now when the oscillation of the master oscillators is ergod
we can replace the average over time by an average ove
variablesX andY using the invariant densityr(X,Y) to ex-
press the condition as

E E lnu~12«1!D f~X!1«1Dg~Y!ur f~X!rg~Y!dXdY,0.

~12!

Here we use the fact that the dynamics of the two masters
not correlated, sor(X,Y)5r f(X)rg(Y), wherer f(X) and
rg(Y) are the invariant densities of the two master osci
n
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tors. Equation~12! gives the general condition for dual syn
chronization of two pairs of one-dimensional maps with li
ear coupling«11«251.

For dual synchronization of two pairs of chaotic oscill
tors, we need to satisfy Eq.~12! even though each master
independently chaotic with* lnuDf (X)urf (X)dX.0 and
* lnuDg(Y)urg(Y)dY.0. Note that even ifuD f u and uDgu are
both greater than unity in magnitude, whenD f andDg have
opposite signs,u(12«1)D f1«1Dgu may be smaller than
unity, so the coupling of the slave oscillators can reduce
magnitude of the deviation, and thus facilitate dual synch
nization. Certainly it can be seen that dual synchronizati
for example, is not possible for maps in whichD f andDg are
both greater than unity everywhere.

We give some specific examples where the condition
dual synchronization can be analytically obtained for t
conditional coupling«11«251. The first one is two pairs o
identical oscillators represented by generalized tent ma
i.e., f (x)5g(x)5(21)[qx]qx mod1, with q52,3,4, . . . ,
where @qx# is the integer part ofqx. Since the invariant
density of the tent map is unity over the domain@8#, one can
easily verify that ug1(t)u5u(12«1)D f(t)1«1Dg(t)u only
has two possible values asu122«1uq and q with the prob-
ability of @q2/2#/q2 and @(q211)/2#/q2, respectively. Then
the maximum Lyapunov exponent is given byl
5(1/x)ln(qxu122«1u), wherex5q2/@q2/2#. This yields the
condition for dual synchronization of two pairs of tent ma
as (12q2x)/2,«1,(11q2x)/2. For the usual tent map a
q52, the condition is 3/8,«1,5/8.

Let us next consider the Bernoulli shift mapx(t11)
52x(t)mod1, which also has a uniform invariant density.
the case of two pairs of Bernoulli shift maps,f (x)5g(x)
52x mod1, g1 is always 2 and dual synchronization ca
never be achieved. However, if one choosesf (x)
52x mod1 andg(x)5(21)[qx]qx mod1 withq restricted to
be an even number,g1 has two possible values as 2(
2«1)1q«1 and 2(12«1)2q«1 with equal probability and
one then obtainsl51/2 lnu4(12«1)

22q2«1
2u. The condition

for dual synchronization is 3/8,«1,5/8 for q52 and
(A3q21424)/(q224),«1,(A5q22424)/(q224) for
q.2, with the strongest synchronization (l52`) at «1
52/(q12) for both cases. It is worth noting that forq.2,
dual chaos synchronization is not possible at«15«251/2.

We have done numerical tests of dual synchronizat
using a number of different maps, including the logistic ma
Chebyshev map, generalized tent map, and cosine m
These maps together with their available invariant den
@8# are listed in Table I. For logistic and Chebyshev ma
the perturbations due to coupling may take the map out o
usual domain, so we extended the domain by making

TABLE I. Chaos maps used in numerical experiments of d
synchronization.

Map f (x) r(x)

Tent (21)[qx]qx mod1 1 (q52,3 . . . )
Chebyshev cos(q cos21x) 1/pA12x2 (q52,3 . . . )
Logistic qx(12x) 1/pAx(12x) (q54)
Cosine m cos(x1u) numerically available
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map periodic, i.e., we takef (x)5 f (x6n) for the logistic
map and takef (x)5 f (x62n) for the Chebyshev map
wheren is an integer. It was verified that for almost all pai
in Table I, there exists a parameter range over which
Lyapunov exponent at the dual synchronized state is ne
tive. The only exceptional case is the coupling between
pairs of Chebyshev maps wherel never becomes negative
implying no dual synchronism happens in this case.

Figure 2 shows both the Lyapunov exponentl and the
synchronization timeTsync as functions of the coupling co
efficient for dual synchronization of two pairs of chaotic o
cillations generated from two different maps: a pair of cos
maps together with a pair of logistic maps@ f (x)5m cos(x)
andg(x)5qx(12x)]. Here,Tsync is defined to be the aver
age time for the error signal between the slave and ma
systems, Err(t)5ux(t)2X(t)u1uy(t)2Y(t)u, to become less
than a certain magnituded([1026 in Fig. 2!. As can be seen
from the figure, there exists a wide range of the coupl
coefficients over whichl is negative and dual synchroniza
tion succeeds. It was further verified thatTsync}1/ulu. The
results demonstrate that the possibility of dual synchron
tion of two pairs of chaos maps is rightly guided by t
condition Eq.~12! on the Lyapunov exponent calculated ov
separate chaotic attractors. We also note the fastest dual
chronization happens at«150.35, «250.65 rather than a
«15«251/2. It can be generally concluded that«15«2
51/2 is not necessarily the optimal coupling for dual sy
chronizing of two different chaotic attractors.

In the second part of this paper, we discuss dual sync
nization in chaotic systems described by a class of de
differential equations of one variable, for which the mech
nism for dual synchronization is related to that of on
dimensional maps. We consider the master system
described by two delay-differential equations with differe
nonlinearities as,

tdX~ t !/dt1X~ t !5 f „X~ t2Tr !…, ~13!

tdY~ t !/dt1Y~ t !5g„Y~ t2Tr !…, ~14!

FIG. 2. Lyapunov exponentl and synchronization timeTsync as
functions of coupling coefficient for conditional coupling«11«2

51. Solid line and circles denotel andTsync respectively for dual
synchronization of two different pairs of chaotic oscillators: a p
of cosine maps (m52.2) and a pair of logistic maps (q54). Pa-
rameter range for successful dual synchronization correspond
the range for negative Lyapunov exponent.
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wheref andg are nonlinear functions,t andTr are respec-
tively the response time and the time delay in the feedba

The synchronization signal is generated by coupling o
puts from the two master oscillators asu(t)5«1f „X(t)…
1«2g„Y(t)…. Meanwhile, the slave system possesses
same set of oscillators with similar parameter values as th
in the driver side, i.e.,

tdx~ t !/dt1x~ t !5 f „x~ t2Tr !…1e~ t2Tr !, ~15!

tdy~ t !/dt1y~ t !5g„y~ t2Tr !…1e~ t2Tr !. ~16!

where e(t)5u(t)2v(t) and v(t)5«1f @x(t)#1«2g@y(t)#.
Here, the delay time is assumed to be identical for all os
lators.

Let us consider the dynamics of small perturbations ab
the dual synchronization state. Note that under the condi
e15e250.5 we can write

td~dx1dy!/dt52~dx1dy!, ~17!

showing that there is convergence to the linedx52dy.
Then the condition for dual synchronization depends only
the convergence to zero ofdx(52dy) on this line, which is
governed by

tddx~ t !/dt52dx~ t !10.5@D f~ t2Tr !

1Dg~ t2Tr !#dx~ t2Tr !. ~18!

HereD f(t)[d f /dX andDg(t)[dg/dY. These are time de
pendent butdx(t) will tend to relax to zero if the second
term on the right hand side is zero on average. This equa
shows that in the case of this type of delay-differential os
lators, as in the case of the one-dimensional discrete m
the possibility of stable dual synchronization of chaos is g
erned by the statistical balance of the fluctuating values
D f andDg .

Now we show numerically that there are particular dela
differential systems for which dual synchronization is po
sible. We consider delay-differential equations describin
well-known class of nonlinear resonator with a delayed fe
back @9#. A typical form for f ~andg) corresponding to ex-
perimental systems@9# is the cosine map,f (X;m,u)
5m cos(X1u), whereu is an offset parameter andm is a
parameter usually proportional to the external input pow
Figure 3 shows an example of two chaotic attractors,
tained for two nonlinear resonators with different parame

r

to

FIG. 3. Attractors of~a! chaos oscillator 1 and~b! chaos oscil-
lator 2 used in dual synchronization.m153.0, u150.4p, m2

53.5, u250.5p, Tr /t5100.
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values, for which dual synchronization is possible. It is fou
that two oscillators in the slave side synchronize to th
corresponding oscillators in the master side within a ti
interval typically about 100Tr . Numerical results show tha
dual synchronization is achieved over a wide range of
rameters (m,u) and linear coupling coefficients («1 ,«2).

To evaluate the robustness of dual synchronization,
use a normalized synchronization errorE which is defined as
the ratio of the root-mean-square~rms! value of the synchro-
nization error to the rms value of the chaotic waveform

FIG. 4. Normalized synchronization errorE vs parameter mis-
matchDm/m ~open circles! and noise levels ~closed triangles! for
m153.0, u150.4p, m253.5, u250.5p, Tr /t5100, «150.4, and
«250.6. The base of the logarithm is 10.
e

t,

n.
ir
e

-

e

f

the driver system, i.e.,E5@s(x2X)1s(y2Y)#/@s(X)
1s(Y)#. Figure 4 shows the normalized synchronization
ror E as a function of parameter mismatchDm/m and the
noise levels for dual synchronizing the two different chao
attractors shown in Fig. 3. It is demonstrated that the e
increases almost linearly with both the parameter misma
and the noise level. One percent of parameter mismatch
sults in the synchronization error of 8% while one percent
noise results in the error of about 4%. The results imply t
the proposed dual synchronization in delay-differential s
tems is robust to both the parameter mismatches and
system noise, which is important for physical realization
synchronizing systems.

In conclusion, we have shown that dual synchronization
possible between two pairs of independent chaotic oscilla
with a generalized coupling. For dual synchronization in d
crete maps, we have shown analytically that dual synchro
zation is possible for a more general coupling than the c
dition described in the previous work@5#. Numerical
simulations using various chaos maps verified the effect
ness of our analysis. It was shown that a particular clas
practical physical systems described by delay-differen
equations, nonlinear resonators which have been investig
in a large number of experiments on opto-electronic osci
tors @9#, can be dually synchronized. The effects of para
eter mismatches and noise, which need to be dealt with
actual experiments, are evaluated and the results verified
robustness of the dual synchronization in such systems.
-
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